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Why Is the Universe So Large? 

Don N. Page ~ 
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S. W. Hawking's proposal for the wave function of  the universe, if correct, 
determines the conditional probabilities for all properties of  the universe. In a 
simple minisuperspace model it predicts that at any given nonzero energy density, 
the universe is most probably infinitely large. 

Physical models for the universe consist of three parts: (1) physical 
variables, (2) dynamical laws, and (3) boundary conditions. Generally 
theoretical physics has concentrated on the first two parts and regards a 
complete account of them to be a unified field theory, while considering 
the third part to be arbitrary. But we know that the boundary conditions 
must be very special in order to explain the flatness, homogeneity, isotropy, 
and arrow of time of our universe. 

Hawking (1982, 1984a,b; Hartle and Hawking, 1983) has proposed that 
"The boundary conditions of the universe are that it has no boundary,"  by 
which he means that the probability or square of the wave function for any 
three-geometry and three-dimensional matter field configuration on it is 
given by a path integral over all compact positive-definite four-geometries 
and four-dimensional matter field configurations, without boundary, con- 
taining the desired three-dimensional one. For many purposes it is more 
convenient to work with the wave function ~ itself, the square root of the 
probability. It is given by a path integral over all compact four-geometries 
to one side of  the desired three-geometry, that is, having it as its one and 
only boundary. Hartle and Hawking (1983) showed that this wave function 
obeys the Wheeler-DeWitt  equation, a second-order hyperbolic differential 
equation in superspace, the infinite-dimensional space whose coordinates 
describe the three-dimensional geometry and matter field configuration. 
Hawking's proposal for the wave function then amounts to giving boundary 
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conditions for 0 on a Cauchy surface in superspace and using the Wheeler- 
DeWitt equation to evolve the wave function to other points of superspace. 

The interpretation of the wave function t) is that [~12 is proportional 
to the probability density or measure for the three-geometry and matter 
fields to be at a particular point of superspace. The probability or measure 
for the universe to have some property A is then 

P(A)~ I 6PAO *1 (1) 

where PA is the projection operator onto the property A and *1 is the 
volume element in superspace. However, the absolute probability or measure 
is untestable by observations made within the universe, and this is reflected 
in the fact that the wave function is not normalizable over superspace--the 
integral in (1) diverges if PA is the identity operator. Instead, only condi- 
tional probabilities are both normalizable and testable by observations. 
With condition B suitably defining what observation is made, the conditional 
probability of the observational result A is then 

~PBPAPBO * 1 
P(AIB ) - -[ ~--~B~ ~- 1 (2) 

For example, if B is the condition that an individual exists with the 
appropriate faculties and looks at the sky at night, one can ask for  the 
conditional probability of some result A, say that individual's seeing the 
sky to be in all directions as bright as the sun. If  P(AIB ) is calculated to 
be much less than unity, and if one does not get A given B, then the theory 
passes this test. If, on the other hand, one had used a wave function 
incorporating the naive expectation from Olbers paradox so that P(AtB ) 
was calculated to be very near unity, then the failure to observe A given B 
would refute this theory at the confidence level given by P(AIB). Thus, 
P(AIB ) is testable (with a confidence that depends on how close it is to 0 
or 1), whereas P(A) is not, because with no way to measure P(B) observa- 
tionally, there would be no way to check the absolute size of P(A). 

One important test of Hawking's proposed wave function would be 
whether it predicts a universe as large and spatially flat as what we observe. 
This is the flatness problem of cosmology--how is it that the universe has 
expanded to at least 10183 Planck volumes and yet the density has not 
dropped so low that gravity becomes unimportant? It would be difficult to 
give a complete, precise answer to this question, first because it would be 
formidable to calculate the complete Hawking wave function for all the 
degrees of freedom of the three-geometry and matter fields, and second 
because it would be arduous to specify completely the condition defining 
our existing and making observations of the size and flatness of the universe. 
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However, we can check what is predicted for a highly idealized model and 
condition. 

Hence we go to a minisuperspace model, in which the wave function 
depends only on a finite number of degrees of freedom. We need at least 
one variable representing the property we are testing (size of the universe) 
and another representing the condition of our making observations, so we 
consider a two-parameter minisuperspace model consisting of a 
homogeneous, isotropic geometry (Friedmann-Robertson-Walker)  
minimally coupled to a self-interacting homogeneous scala r field (Hawking, 
1984a,b; Page, 1985a; Hawking and Page, 1986). Following Hawking and 
Page (1986), the three-geometry will be given by the three-metric 

g~ = a2~2~ U (3) 

where ~ is a metric for a compact three-space of constant unit curvature 

3 Rijkl  = k ( g i ~ j l  - gilgjk) (4) 

with k = +1, 0, or -1 ,  where o" is a normalization constant chosen so that 
the three-volume of this unit-curvature space is 4rrG/(30"2) ,  and where a is 
the scale parameter giving the size. The homogeneous scalar field (constant 
on each three-space) will be expressed as 

= ( 4 r r G / 3 )  - ' / 2& (5) 

and its self-interaction potential will be written as 

3 ( / ( 6 )  (6) 
U(qb) = 4~rGcr 2 

where tb is taken as the second parameter of this two-dimensional minisuper- 
space, so g, = ~0(a, cb). 

Now Hawking's path-integral proposal for q,(a, ~b) is equivalent to 
giving the Wheeler-DeWitt  equation it obeys and appropriate boundary 
conditions to select the correct solution of this equation. The results depend 
on the measure chosen for the path integral, which affects the factor ordering 
of  the Wheeler-DeWitt  equation. Hawking and I proposed that the differen- 
tial operator in this equation should take the form of the Laplacian in a 
natural metric in the superspace (Hawking and Page, 1986), which in 
this two-dimensional case (with the lapse function N chosen to be the 
constant or) is the flat metric 

ds 2= - a  da2 + a 3 d~b 2= - d u  dv (7) 

with null coordinates 

u = ~a3/2e-35/2, v = ~a3/2e+3*/2 (8) 
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Then the Wheeler-DeWitt equation becomes 

(-�89 V)q,=-(2\ Ou 020v + a 3 U - l k a )  0 

= _ • 1 7 7  a_ O 2 ) 
2a3\  Oa aa Oqb2 ~-2a6~j-ka 4 ~b(a, 4~)=0 (9) 

which is the Klein-Gordon equation for a particle of variable mass-squared 
2 V = 2a3 f ] -  ka. 

The boundary conditions necessary to select a particular solution of 
(9) may be chosen to be the value of 0 along the null cone uv =-~a 3= 0 
that is the past causal boundary of the minisuperspace. One can then 
estimate that, so long as U(~b) rises slower than e 61~1 for large ]~bl, the 
dominant contribution to the path integral for points near the boundary 
will come from paths having negligible action, so 0 should be nearly constant 
along this boundary (Page, 1985a; Hawking and Page, 1986). Then for 
many [but not all (Hawking, 1985; Page, 1985b)] purposes it may be a 
sufficiently good approximation to set @ = 1 along the boundary, remember- 
ing that the overall scale of 0 does not affect the testable conditional 
probabilities given by (2). 

To find 0(a, ~b) for a > 0, we hence integrate (9) forward in the timelike 
variable a of the metric (7) from the approximate boundary condition 
~(0, 4)) = 1. Assuming that /](~b) increases monotonically well above unity 
for large [~b] but always at a much slower logarithmic rate than e 614)1 does 
(e.g., as the free massive self-interaction /] = �89 2 does for ]~b] >> 2t/2m-1 + 
�89 we have that the wave function in this large- I ~b] region has the approximate 
Bessel-function form 

~0 = Jo[~a3(2 ~),/23 (10) 

When the argument of the Bessel function is large, one can write this in 
the WKB form 

O = 0++ O- = C e'S+ Ce -'s (11) 

where the prefactor and phase have the values 

( ~ ) - 1 / 2  .rr 1 3r,~r,l/2 
C =  a 3 (2U) -1/4, S=-4--~u t zu )  (12) 

In this WKB regime where the wave function oscillates rapidly, it may 
be interpreted as a superposition of an ensemble of classical wave packets 
which move along trajectories normal to the surfaces of constant phase S. 
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These trajectories obey the classical Friedmann-Robertson-Walker scalar- 
field equations 

d 2 = a2~2+2a2 U(qS) - k (13) 

q- 3a-l~iq~ q- dO//d~ = 0 (14) 

where the overdot represeffts d//dt in the classical four-dimensional Lorentz- 
ian-signature metric 

ds 2 = o2 ( -d t2  + a~,o dx'  dx j) (15) 
represented by each trajectory. In the large-14~t region where (10)-(12) are 
valid, the trajectories have 

d (28)1/2 ' (16) 
a 

1 d (23)1/2 (17) 

which gives a long period of roughly exponential expansion or inflation. 
Although there is a two-parameter family of solutions of the classical 

FRW equations (13) and (14) (not counting the choice of origin for the 
time parameter t), the trajectories given by the wave function (10) form 
only a one-parameter set obeying (16) and (17). Thus in the WKB regime 
0 does represent an  ensemble of many classical worlds, but it does not 
represent all possible worlds. Its predictive power is contained in the 
probability distribution it gives over the set of classical trajectories it rep- 
resents, and in the fact that the probability for other trajectories is very 
small (zero in the WKB approximation). 

For large I 1, this one-parameter set of trajectories may be labeled by 
q~o, the value of ~b they have where 0 first crosses zero as a is increased 
from zero [roughly where S = - ~ / 2  o r  a=(97r/4)1/3(21~[)-l/6]. With 
our suggested factor ordering in the Wheeler-DeWitt equation and with 
the probability measure (1) or (2) in the natural minisuperspace metric (7), 
the probability contributed to a certain region of minisuperspace by 
the trajectories of a WKB component such as ~+ = C e is is proportional to 
the proper-time o-At that the trajectories spend in the region, multiplied by 
the magnitude of the Klein-Gordon flux carried through the region by that 
WKB component (Hawking and Page, 1986). For the WKB component 
0§ given by (11) and (12), the flux carried along a pencil of trajectories 
labeled by large I ol works out to be simply proportional to z~q~o, the spread 
in ~bo of these trajectories. The WKB component if_ will give an opposite 
flux but an equal contribution to the probability (1) of being in a certain 
region of minisuperspace, and the interference effects between if§ and 0_ 
in 1012 will average out if one integrates over a region large compared with 
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the size of the oscillations of q4 which is quite small (even in Planck units) 
in the WKB regime. 

Now one can extend the WKB solution starting in the large-14~ i region 
by following the solutions of (13) and (14) into the small-J0[ region where 
(16) and (17) are no longer valid. If U(~b) decreases monotonically to an 
absolute minimum value of zero at ~b = 4~,~ and has a quadratic dependence 
on ~b near that minimum, the classical trajectories will eventually undergo 
damped oscillations around that minimum. Averaged over several oscilla- 
tions, the trajectories will behave as a dust-filled FRW model with 

~2 = E a - 1  _ k (18) 

where 

E = a3(~2+2U)  (19) 

is approximately conserved during the oscillatory phase and represents the 
equivalent amount of dustlike "mass" the solution has. During the inflation- 
ary phase when [~b I is large, E grows rapidly, and one can integrate this 
growth to estimate that when a trajectory that starts at ~bo enters its oscillatory 
phase, it will then have 

In E(~bo)~- 18 U(~)  &b +log terms (20) 
m \d ,~  / 

Hence if th starts at large tho, E becomes enormous. 
Once we have the classical trajectories given by the wave function in 

the WKB regime and the probability distribution for them, we can calculate 
conditional probabilities by (2). In the simple two-dimensional minisuper- 
space model, we cannot really have sufficient conditions for an observer. 
However, we can argue that an observer could exist in a more realistic 
model only if the matter density were in some reasonable range, bounded 
away from zero and from excessively high values. Hence in our simplified 
model we will take the condition B to be that the energy density lies in 
some finite range above zero but well below t-he Planck value. Then property 
A can be that the size of the universe lie within some range consistent with 
observations, and the question is whether P(AIB ) is not too small to make 
such observations unlikely. 

For simplicity, express the size of the universe in terms of a, and let p 
be 87rGtr2/3 times the density, so that 

p= E / a  3 (21) 

As discussed above, the probability dP contributed by trajectories that 
started at large ~bo is proportional purely to the spread d~o of the trajectories 
and to dt along the trajectories, so dP/d t  dcho is constant. Then changing 
variables to a and p in the dustlike regime (where p << 1 and pa 2 -  k > O) 
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by using (18), (20), and (21), and using the fact that the integrand of (20) 
at ~bo has only a very weak dependence on E(~bo)=pa 3 when it is very 
large, leads to a probability distribution of the approximate form 

d p  oc p-~(pa 2 -  k) -1/2 dp da (22) 

for a -3 << p << 1 (and pa 2 - k > 0). 

One sees that for B giving a fixed range of p, the unnormalized 
conditional probability distribution for a integrates to a logarithmic diver- 
gence at infinite a. This is simply because the probability distribution over 
trajectories is flat as a function of ~bo, and each trajectory spends roughly 
the same amount of time (and hence contributes the same probability) 
passing through the fixed range of p (if ~bo is large enough that pa2>> 1 
there). Hence the contribution diverges as I~bot (and therefore also a, at 
fixed p) is taken to infinity. Thus the normalized conditional probability 
P ( A [ B )  is zero if the range of a given by A does not include a = ~ and is 
unity if it does include a = ~ .  In other words, at fixed energy density, the 
universe given by Hawking's wave function in this minisuperspace model 
most probably is infinitely large. In this homogeneous, isotropic case, it 
would also most probably be precisely fiat (e.g., 3R =6ko'-2a -2 = 0), though 
in a more realistic model including inhomogeneous and anisotropic modes 
(Halliwell and Hawking, 1985) there would be perturbations of the spatial 
curvature around the average value even if the spatial average remained 
exactly zero. 

Obviously this calculation (Hawking and Page, 1986) is only a first 
step toward showing, that Hawking's proposed wave function predicts an 
observed universe that is very large. First, the choice of the superspace 
measure and factor ordering needs to be better justified, and the difficulty 
mentioned by Hawking and Page (1986) sorted out. Next, more complex 
and realistic models than the two-dimensional minisuperspace need to be 
analyzed. Its validity may be especially questioned when one deduces that 
most trajectories come from very large ~bo, for when ~b is so large that the 
energy density surpasses the Planck value, one might expect the quantum 
fluctuations in the modes that are ignored to make a significant correction 
to the behavior deduced from the homogeneous, isotropic mode alone (A. 
Vilenkin, personal communication). But it is exciting to see that something 
like Hawking's proposal for the wave function of the universe may actually 
be able to explain from first principles why the universe is so large. 
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